In times of growing patient numbers, increasingly complex therapy pathways and limited clinical capabilities, the reasonable thing to do is rethink clinical routines and not perform CT „the way it was always done“. With the SOMATOM Definition Flash, Siemens Healthineers establish industry standards – from scanning without beta-blockers and without hazardous sedation, to characterizing lesions while maintaining dose neutrality with Dual Source Dual Energy.
Redefining standards in:
SOMATOM Definition FlashRedefining standards
Avez-vous jugé cette information utile?
The statements by Siemens Healthineers' customers described herein are based on results that were achieved in the customer's unique setting. Since there is no "typical" hospital and many variables exist (e.g., hospital size, case mix, level of IT adoption) there can be no guarantee that other customers will achieve the same results.
Optional
In clinical practice, the use of ADMIRE may reduce CT patient dose depending on the clinical task, patient size, anatomical location, and clinical practice. A consultation with a radiologist and a physicist should be made to determine the appropriate dose to obtain diagnostic image quality for the particular clinical task
In clinical practice, the use of SAFIRE may reduce CT patient dose depending on the clinical task, patient size, anatomical location, and clinical practice. A consultation with a radiologist and a physicist should be made to determine the appropriate dose to obtain diagnostic image quality for the particular clinical task. The following test method was used to determine a 54 to 60% dose reduction when using the SAFIRE reconstruction software. Noise, CT numbers, homogeneity, low-contast resolution, and high contrast resolution were assessed in a Gammex 438 phantom. Low dose data reconstructed with SAFIRE showed the same image quality compared to full dose data based on this test. Data on file.
This feature is 510(k) pending. Not available for sale in the U.S.
iMAR is designed to yield images with a reduced level of metal artifacts compared to conventional reconstruction if the underlying CT data is distorted by metal being present in the scanned object. The exact amount of metal artifact reduction and the corresponding improvement in image quality achievable depends on a number of factors, including composition and size of the metal part within the object, the patient size, anatomical location and clinical practice. It is recommended, to perform iMAR reconstruction in addition to conventional reconstruction